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Abstract. In a competitive market investors in a data network need to give utmost consid-
erations on profitability. They must have clear picture of the size, growth rate and demand
for different services. However, the investors’ budget may be limited, and therefore the speed
at which the network is rolled out, must be carefully planned to ensure that they can meet
profitability targets. We model first the roll out order as combinatorial optimization prob-
lems and then extend them as continuous optimization problems. We then implement these
models in a practical problem. Numerical studies suggested that the optimization problems
have multiple local minima. Therefore, a global optimization technique is used to obtain
the global minimum for the continuous variable problem and a combinatorial optimization
technique is used to solve the discrete variable problem. Optimal financial indicators are
obtained to assess the commercial viability of the network. Finally, we demonstrate that the
solution of these optimization problems can provide an investment policy to the investors in
data networks.

Key words: data network, combinatorial optimization, global optimization, point of pres-
ence, rollout order, net present value, internal rate of return.

1. Introduction

When a data communication network is designed, three core issues must
be considered. The first issue is the estimation of demand for various ser-
vices on a geographical basis. Demand will depend on the concentration
and the nature of the users. For instance, there will be more business users
of telephone, fax and computers in urban areas than in semi-urban or rural
areas. The second issue is the optimal placement of resources in the net-
work. The network placement has to be done in an optimal way so as to
minimize the cost of the network. Given a certain demand, the geographi-
cal distribution of the demand and the location of major landmarks (such
as mountains or rivers), the resource planner must decide what capacity is
required to meet the demand in the network and where to optimally place
all the equipment in the network. For instance, should it be required to

∗This network is a combined telephone and data network such as VIP (Voice over Internet
Protocol).
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install a fibre optic backbone, where should the fibre be routed and where
should the equipment be placed? The third issue is the profitability of the
network. Once the demand for services is known, it is possible to determine
the revenue that can be generated from these services. Combining this with
the cost of the roll-out, the profitability of the network can be determined.
We have addressed the first and the second issues in references (Ali et al.,
2003; Ali, 2006). The third issue is considered in this paper. The purpose
of this research, therefore, is to optimize the rate and order at which a net-
work is rolled out in order to maximize the profit.

In Section 2, optimization models involving the rollout order are derived.
Section 3 presents an example of a data network. Section 4 presents the
algorithms used in the optimization of a data network problem. Section 5
presents the results of the optimization and demonstrates the usefulness of
the models. Conclusions are given in section 6.

2. Financial Optimization

In this section, we show how the rollout order of a data network can
be modeled as optimization problems. We model first the rollout order as
combinatorial optimization problems which are then extended to continu-
ous optimization problems. Formulations of the optimization problems are
based on costs and revenues, and the internal rate of return.

The investors in a data network want to make their investment decisions
based on what their investment policy is worth to them now. Therefore,
before the implementation of the network, the investors decide on a spe-
cific time frame in which they would like to make a profit. We refer to this
time frame as the ‘payback period’. We derive the profitability of the net-
work within the payback period, although there is no reason why the inves-
tors cannot make profits beyond this period. We use the net present value
(npv) and the internal rate of return (irr) (Sydsaeter and Hammond, 1997;
Weston, 2001) as measures of profitability, as they are complementary mea-
sures of discounted cash flow (Weston, 2001). The npv and irr together give
better analysis than either one of them. The interest rate (z1) and the infla-
tion rate (z2) are taken to be constant over the payback period. In a stable
economy these rates do not vary drastically over a short payback period.
Profits from a network depend on the size of the network, the number of
users and their growth rate (z3) (growth rate of demand for services). We
consider the network up to the level of the point of presence (PoP). Thus all
financial calculations are carried out at the PoP level. We assume that there
are n number of PoPs and PoP i (i =1,2, . . . , n) has a bandwidth capacity of
bi megabits per second (mbps), both ways. We refer to a connection between
two PoPs as an edge. We assume that the initial assignment of bandwidth
on the edges is sufficient to carry the traffic for the entire payback period.
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There are revenues and costs (including the cable cost) associated with each
PoP. The PoP i has an associated cable cost ci . We refer to the reference (Ali,
2006) for more details on cable cost.

The cost is the currency value of any asset (including labour or knowl-
edge) used in order to lay out and operate a network. The fibre optic tech-
nology that is installed at each PoP has a cost that can be divided into four
components, namely (a) capital cost, (b) installation cost, (c) operating cost
and (d) miscellaneous cost. We assume that the capital cost and the oper-
ating costs are dependent on the bandwidth capacity bi of the ith PoP. The
capital cost (Ki) includes the capital expenditure (offices and tents) and the
cost of the instruments. The installation cost (I ) is the cost for installation
of the instruments at PoPs and the operating cost (Oi) is the cost for main-
tenance and operation, e.g. the human capital (salaries). The miscellaneous
cost (M) is the incidental cost, e.g., the cost for a workshop and entertain-
ments. We take into account the inflationary effect. Therefore, these costs
are not fixed throughout the payback period.

We assume that there is an amount of traffic using the network per year,
and that the tariffs are the main source of revenue for the investors. There
are two types of tariffs: a fixed tariff, ft , per year, per line (user) and a var-
iable tariff, vt , per megabytes. At each PoP i, we have a number of users
ni and usage ui in gigabytes (gb), per year. Tariffs are not fixed throughout
the payback period. The fixed tariff ft and the variable tariff vt increase at
an annual rate of z4. The number of users ni and usage ui have a growth
rate z3. Next, we derive the financial models before presenting the optimi-
zation problems.

2.1. financial calculations

At this point, we assume that a network will be installed within the pay-
back period d and the installations are to be done at the beginning of
each year. We also assume that the installation time is negligible, i.e. if the
installation of a PoP starts at the beginning of a year then it will be com-
pleted within a short period of time so that the demand of the PoP will be
satisfied within the same year. This implies that the revenues will be gener-
ated for d years from the PoPs installed at the beginning of the first year,
and for one year from the PoPs installed at the beginning of the d-th year.
Let us assume that the costs and revenues are calculated at equally spaced
intervals. We will relax this assumption later in the paper.

We begin with the mathematical derivation of operating costs of PoPs. The
operating cost is the annual running cost while the other costs are once-off.
For instance, when a PoP is installed the money spent on capital, the installa-
tion and for miscellaneous reasons are spent once only. However, these costs
vary with inflation. The operating cost also increases in direct proportion
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to the inflation rate, since the cost of purchasing new materials or hiring
people approximately follows the inflation rate. The operating cost can only
be determined at the end of each year after a PoP has been installed. How-
ever, we assume that an estimate Oi of the operating cost per bi megabits
bandwidth of the ith PoP is known at the beginning of the first year. This
assumption is based on the historical data.

Let xi denote the installation year of the ith PoP, xi =0,1,2, . . . , (d −1).
The operating cost grows with the inflation rate, e.g., the cost increases to
Oi(1+ z2)

xi at the xith year.
The total once-off cost is the addition of the capital cost, the installation

cost and the cable cost, per PoP. If we install the ith PoP at the beginning
of the first year of the payback period, the money spent is Ki + I +M +ci .
This cost at the beginning of the xith year will be

(Ki + I +M + ci)(1+ z2)
xi , xi ∈{0,1,2, . . . , (d −1)}. (1)

Therefore, if the ith PoP is installed at the beginning of xith year of the payback
period, then the net present value, Cxi

, of the entire cost for this PoP is given by

Cxi
= (Ki +M + I + ci)(1+ z2)

xi (1+ z1)
−xi +

d∑

j=(xi+1)

Oi(1+ z2)
j (1+ z1)

−j ,

xi ∈{0,1,2, . . . , (d −1)}, (2)

where the sum is the accumulated sum of the operating costs from xith to
the dth year. We have taken the interest rate z1 as the discount rate.

The revenue generated at the end of first year (year one) from the ith
PoP installed at the beginning of the first year (i.e., year zero) is given by
ni(1 + z3)

1ft(1 + z4)
1 + ui(1 + z3)

1vt (1 + z4)
1 (ui converted to megabytes).

The values for ni, ui, ft and vt are all known at the beginning of the first
year and their incremental values are effective at the beginning of the sec-
ond year. Therefore, the net present value of the revenues, Rxi

, generated at
the ith PoP installed at the beginning of the xith year, is given by

Rxi
=

d∑

j=(xi+1)

(
ni(1+ z3)

j ft (1+ z4)
j +ui(1+ z3)

jvt (1+ z4)
j
)
(1+ z1)

−j ,

xi ∈{0,1,2, . . . , (d −1)}. (3)

This can be rewritten as follows:

Rxi
=

d∑

j=(xi+1)

(nift +uivt )(1+ z4)
j (1+ z3)

j (1+ z1)
−j ,

xi ∈{0,1,2, · · · , (d −1)}. (4)
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We present the npv of the profit first at the PoP level and then at the
network level. The npv of profit from the ith PoP installed at the begin-
ning of the xith year is given by

P v
xi

=Rxi
−Cxi

, (5)

where P v
xi

is the npv of profit from the ith PoP (i =1,2, . . . , n). Finally, the
npv of profit generated by all PoPs is given by

npvv
pops =

n∑

i=1

Rxi
−Cxi

, (6)

where npvv
pops is the npv of the total profit from all PoPs.

2.1.1. Network Cost due to Subscription Fees

A network service provider has to pay an annual subscription fee to a tele-
communication company for the use of its major infrastructure (telecom-
munication network). This annual fee X0, payable at the beginning of each
year k (k = 0,1, . . . , (d − 1)), increases with inflation z2. However, the kth
(k =1,2, . . . , (d −1)) year’s subscription fee Xk is dependent on the usages
Uk and Uk−1. The total usage Uj (j = 0,1, . . . , k) is known at the begin-
ning of the j th year. The usage Uj at the beginning of the j th year is the
usage due to the PoPs installed at the beginning of j th year plus the usages
resulting from the installation of PoPs in previous years. If Uk �Uk−1 then
Xk =X0(1 + z2)

k otherwise if Uk > tk ×Uk−1 (tk > 1) then Xk =�tk�×X0(1 +
z2)

k, where �tk� is the largest integer not larger than tk. This type of agree-
ments are common between the telecommunication companies and the data
network service providers. The npv of the subscription fees for a payback
period d can be written as

Sv
f =

(d−1)∑

k=0

Yk(1+ z2)
k(1+ z1)

−k, (7)

where Sv
f is the npv of the subscription fees spread over the entire payback

period, and Yk =�tk�X0 for k �1 and Y0 =X0.

2.1.2. The Internal Rate of Return

The internal rate of return (irr) is a discount rate at which the present
value of a series of cashflow1 (initial outlay and profits) is equal to zero.

1If we denote k as the cashflow index for the entire network then k =0,1,2, . . . , d. We con-
sider the costs as the negative revenues and cashflows as the accumulated revenues at index k.
Notice that the revenue from the network at k =0 is always negative.
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For a particular rollout order of the network there will be cashflows from
various PoPs, each year. For example, there will be cashflows at years
xi, xi +1, . . . , d, due to the ith PoP installed at the xith year. If we denote
our total cashflows at the beginning of kth year by CFk, k = 0,1,2, . . . , d,
then the npv of the cashflows can be written as a function of irr as fol-
lows:

F(irr)=
d∑

k=0

CFk(1+ irr)−k. (8)

The irr is the root of F or the solution of the equation F(irr)=0. There-
fore, irr is the discount rate for which the above npv is zero. The first cash-
flow is given by

CF0 =−Y0 −
n0∑

i=1

(K0i
+M + I + c0i ), (9)

where Y0 is the subscription fee, n0 is the number of PoPs installed in year
zero (i.e., beginning of the first year), and c0i and K0i

are cable and capital
costs respectively for the 0ith PoP installed in year zero. The kth cashflow
is given by

CFk =−Yk(1+ z2)
k −

nk∑

i=1

(Kki
+M + I + cki )(1+ z2)

k

+
(k−1)∑

j=0

nj∑

i=1

[
(nji

ft +uji
vt )(1+ z3)

k(1+ z4)
k −Oji

(1+ z2)
k
]
,

k =1,2, . . . , (d −1), (10)

where the first term is the subscription fee and the second term is the once-
off cost from all nk PoPs installed at the beginning of the kth year. The
first sum in the third term in (10) is the sum over preceding installation
years and the second sum is the sum over the number of PoPs installed in
each such years. The ji is the index of the PoP installed in j th year. The
final cashflow is given by

CFd =
(d−1)∑

j=0

nj∑

i=1

[
(nji

ft +uji
vt )(1+ z3)

d(1+ z4)
d −Oji

(1+ z2)
d
]
.

=
n0∑

i=1

[
(n0i

ft +u0i
vt )(1+ z3)

d(1+ z4)
d −O0i

(1+ z2)
d
]
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+
n1∑

i=1

[
(n1i

ft +u1i
vt )(1+ z3)

d(1+ z4)
d −O1i

(1+ z2)
d
]+, . . . ,

+
n(d−1)∑

i=1

[
(n(d−1)i ft +u(d−1)i vt )(1+ z3)

d(1+ z4)
d −O(d−1)i (1+ z2)

d
]
.

(11)

Notice that unlike (10), (11) does not have installation costs. We have used the
Newton method (Nocedal and Wright, 1999) to obtain the root of F in (8).

2.2. combinatorial optimization problems

We consider two optimization problems, namely AP and BP . The first
problem, AP , is to maximize the net present value of profits from the entire
network. This problem is concerned with the maximization of the com-
bined net present value of (6) and negative of (7). The variables of the opti-
mization problem are the integer variables xi taking values from the set
{0,1,2, . . . , (d −1)} for i =1,2, . . . , n. Let x = (x1, x2, . . . , xn) be a vector of
discrete random variables, taking values from the set {0,1,2, . . . , (d − 1)}.
The objective function is given by

fp(x1, x2, . . . , xn)=−Sv
f +npvv

pops, (12)

where fp is the net present value for the entire network. More precisely, the
maximization problem can be stated as follows:

max
xi∈{0,1,2,... ,(d−1)}

fp(x1, x2, . . . , xn)=−
(d−1)∑

k=0

Yk(1+ z2)
k(1+ z1)

−k

+
n∑

i=1

⎛

⎝
d∑

j=(xi+1)

[
(nift +uivt )(1+ z3)

j (1+ z4)
j (1+ z1)

−j (13)

− Oi(1+ z2)
j (1+ z1)

−j
] − (Ki +M + I + ci)(1+ z2)

xi (1+ z1)
−xi

⎞

⎠ ,

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j.

The constraint gij in (13) implies that the installation of the rith PoP must
precede that of the rj th PoP, due to the link or connectivity between the
PoPs. There may be several such constraints. Sv

f implicitly depends on x.
One needs to calculate usages at Uk and Uk−1 in order to calculate Yk in
(13).
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The second problem, BP , is the maximization of irr as a solution of
F(irr)=0 in (8). The problem is to maximize the irr as a function of cash-
flows CFk, k =0,1, . . . , d, resulting from a rollout order. This problem can
be defined as follows:

max irr,

subject to F(irr)=
d∑

k=0

CFk(1+ irr)−k =0

and gij (x1, x2, . . . , xn)=xri
−xrj

�0
for some i, j ∈{1,2, . . . , n}, i �= j,

(14)

where CFk are defined by (9)–(11). Clearly irr depends on the cashflows
CFk which in turn depend on the rollout order. Thus, both AP and PB are
functions of the installation year. Which PoP will be installed at the begin-
ning of which year (rollout order) will depend upon the quantity and the
types of demands, costs and revenues they generate.

2.3. generalizations of problems AP and BP

In the formulation of AP and BP , we assume that PoPs are installed at the
beginning of each year of the payback period. We would like to relax this
assumption for the purpose of generalizations. We assume that PoPs are
installed at the beginning of any units of time. For example, installations
can occur annually, semiannually, quarterly, monthly and so on. Let m be
the frequency of installation per annum. Thus m = 1,2,4,12 means PoPs
are installed annually, semiannually, quarterly and monthly respectively. We
further assume that the interest rate is discounted, and the inflation and the
growth rates are compounded on the basis of frequency m of PoP instal-
lation. That is, if m = 12 is the frequency of installation per annum then
the interest rate is discounted monthly. For example, if the interest rate is
compounded m times per annum then the terminal value of a unit amount
investment for d years will be

(
1+ z1

m

)md

. (15)

Under the above considerations, the combinatorial optimization problem
AP given by (13) has the following general form:

max
xi∈{0,1,2,... ,(md−1)}

fp(x1, x2, . . . , xn)

=−Sv
f +

n∑

i=1

⎛

⎝
md∑

j=(xi+1)

[
(nift +uivt )

(
1+ z3

m

)j (
1+ z4

m

)j (
1+ z1

m

)−j
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−Oi

(
1+ z2

m

)j(
1+ z1

m

)−j
]
−(Ki +M + I + ci)

(
1+z2

m

)xi
(

1+ z1

m

)−xi

⎞

⎠

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (16)

Although the annual subscription fee is paid at the beginning of each year,
it can be compounded m times per annum. Hence the problem AP can be
written as follows

max
xi∈{0,1,2,... ,(md−1)}

fp(x1, x2, . . . , xn)

=−
(d−1)∑

k=0

Yk

(
1+ z2

m

)mk (
1+ z1

m

)−mk

+
n∑

i=1

⎛

⎝
md∑

j=(xi+1)

[
(nift +uivt )

(
1+ z3

m

)j (
1+ z4

m

)j (
1+ z1

m

)−j

−Oi

(
1+ z2

m

)j (
1+ z1

m

)−j
]

−(Ki +M + I + ci)
(

1+ z2

m

)xi
(

1+ z1

m

)−xi

⎞

⎠

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (17)

The optimization problem (13) is a special case of (17), these two problems
are equal when m=1. In order to facilitate the understanding and to make
the difference between the problems more explicit, we denote the problem
in (17) by Am

P and the problem in (13) by A1
P , as a special case when m=1.

A generalization, Bm
P , of (15) can similarly be defined by

max irr,

subject to F(irr)=
md∑

k=0

CFk(1+ irr

m
)−k =0

and gij = (x1, x2, . . . , xn)�0 for some i, j, i �= j,

(18)

where

CF0 =−Y0 −
n0∑

i=1

(K0i
+M + I + c0i ), (19)
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CFk =−Sf −
nk∑

i=1

(Kki
+M + I + cki )

(
1+ z2

m

)k

+
(k−1)∑

j=0

nj∑

i=1

[
(nji

ft +uji
vt )

(
1+ z3

m

)k (
1+ z4

m

)k

−Oji

(
1+ z2

m

)k
]

,

k =1,2, . . . , (md −1), (20)

where

Sf =
{

Y� k
m

�(1+ z2
m

)k if k ≡0 (mod m) , k =1, . . . , (md −1)

0 otherwise.

Finally,

CFmd =
(md−1)∑

j=0

nj∑

i=1

[
(nji

ft +uji
vt )

(
1+ z3

m

)md (
1+ z4

m

)md

−Oji

(
1+ z2

m

)md
]
.

(21)

The equations (10) and (11) are special cases of equations (20) and (21)
respectively.

2.4. continuous optimization problems

We further relax the installation time of PoPs for the derivation of contin-
uous optimization problems. In order to make the installation time xi as
continuous variables, we consider continuous compounding of all the rates
(interest, inflation and growth rates). This means the frequency m tends to
infinity. With continuous compounding, the terminal value in (15) is now
ez1d where d can now be treated as real (Hull, 1995). The continuous ver-
sion, A∞

P , resulted from taking limit m → ∞ in (17), of Am
P is now given

by

max
xi∈[0,d]

fp(x1, x2, . . . , xn)=−
(d−1)∑

k=0

Yk exp(k(z2 − z1))

+
n∑

i=1

[
d∑

xi

(nift +uivt ) exp(xi(z3 + z4 − z1))

× 1−
d∑

xi

Oi exp(xi(z2 − z1))×1 −(Ki +M + I + ci) exp(xi(z2 − z1))

]
,

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (22)
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This can be written as

max
xi∈[0,d]

fp(x1, x2, . . . , xn)=−
(d−1)∑

k=0

Yk exp(k(z2 − z1))

+
n∑

i=1

[
(nift +uivt ) lim

N→∞

N∑

i=0

(
d −xi

N

)
exp((z3 + z4 − z1))

×
(

xi + i
d −xi

N

)
−Oi lim

N→∞

N∑

i=0

(
d −xi

N

)
exp

(
(z2 − z1)

(
xi + i

d −xi

N

))

−(Ki +M + I + ci) exp(xi(z2 − z1))

]
,

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (23)

Taking limit N →∞ we get

max
xi∈[0,d]

fp(x1, x2, . . . , xn)=−
(d−1)∑

k=0

Yk exp(k(z2 − z1))

+
n∑

i=1

[
(nift +uivt )

∫ d

xi

exp((z3 + z4 − z1)x)dx

− Oi

∫ d

xi

exp((z2 − z1)x)dx −(Ki +M + I + ci) exp(xi(z2 − z1))

]
,

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (24)

Integrating out we get

max
xi∈[0,d]

fp(x1, x2, . . . , xn)=−
(d−1)∑

k=0

Yk exp(k(z2 − z1))

+
n∑

i=1

[
(nift +uivt )

(z3 + z4 − z1)
(exp((z3 + z4 − z1)d)− exp((z3 + z4 − z1)xi))

− Oi

(z2 − z1)
(exp((z2 − z1)d)− exp((z2 − z1)xi))

−(Ki +M + I + ci) exp(xi(z2 − z1))

]
,

subject to gij (x1, x2, . . . , xn)=xri
−xrj

�0

for some i, j ∈{1,2, . . . , n}, i �= j. (25)
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The values Yk in the first term in (25) are calculated from Uk and Uk−1 by
obtaining the nearest integer value to xi for each PoP.

We now present the continuous version of the problem (18). The installa-
tion time for each PoP is now continuous. We consider each of these times
as the time of cashflow, i.e. the cashflow index. There are n + 1 cashflow
indexes due to n POPs. These include the endpoint of the payback period.
Positions of n cashflow indexes change with the installation time. We con-
sider the cashflows due to the subscription fee separately. There are therefore
(n+1)+d cashflows in total. Using these cashflows we write the continuous
version, B∞

P , of Bm
P by

max irr,

subject to F(irr)=∑(n+1)+d

i=1 CFi exp(−(irr)xri
)=0

and gij (x1, . . . , xn)=xri
−xrj

�0 for some i, j, i �= j,

(26)

where xri
is the installation time of the rith PoP. Without loss of generality,

we assume that

xr1 <xr2 < · · ·<xrn
<xr(n+1)

=d.

The cashflow due to the PoP installed at the earliest time is given by

CF1 =−(Kr1 +M + I + cr1) exp(z2xr1). (27)

Notice that the very first installation does not generate any revenues. The
cashflow generated at the ith installation is given by

CFi =−(Kri
+M + I + cri ) exp(z2xri

)

−
i−1∑

j=1

∫ xri

xrj

[
Orj

exp(z2x)− (nrj
ft +urj

vt ) exp((z3 + z4)x)
]
dx,

i =2,3, . . . , n. (28)

The first term in (28) is the once-off cost due to the installation of the rith
PoP and the second term is the accumulation of operating costs and reve-
nues at xri

from all PoPs that are installed prior to the rith PoP. Integrating
out we get

CFi =−(Kri
+M + I + cri ) exp(z2xri

)−
i−1∑

j=1

(
Orj

z2
(exp(z2xri

)− exp(z2xrj
))

+ (nrj
ft +urj

vt )

(z3 + z4)
(exp((z3 + z4)xrj

)− exp((z3 + z4)xri
))

)
,

i =2,3, . . . , n. (29)
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At the final cashflow index there is no installation and therefore the cash-
flow is given by

CFn+1 =−
n∑

j=1

∫ xr(n+1)

xrj

[
Orj

ez2x − (nrj
ft +urj

vt )e
(z3+z4)x

]
. (30)

Integrating out we get

CFn+1 =−
n∑

j=1

[
Orj

z2
(exp(z2xr(n+1)

)− exp(z2xrj
))

+ (nrj
ft +urj

vt )

(z3 + z4)
(exp((z3 + z4)xrj

)− exp((z3 + z4)xr(n+1)
))

]
, (31)

where x(n+1) =d. The cashflows due to subscription fees are given by

CF(n+1)+1+j =−Yj exp(z2j), j =0,1, . . . , (d −1). (32)

The cashflows in (32) are generated at the beginning of each year and they
depend on the installation year of all PoPs. Both the problems A∞

P and B∞
P

are n-dimensional where each continuous variable xi is defined in [0, d].

3. Application to a Data Network Problem

In this section, we consider a practical network problem to demonstrate
the usefulness of the optimization models presented in the previous sec-
tion. We show that the results of the optimization problems can assess
the commercial viability and assist the investors in the network. The prob-
lem concerned here forms part of a network placement project involving a
Southern African region of 500 kilometers (km) by 500 km, where an entire
network has to be serviced (Alcatel, private communication). For more
details of the network,2 see the references (Ali et al., 2003; Ali, 2006).
There are a total of 36 PoPs for the entire network. All PoPs have a band-
width capacity of 100 megabits per second (mbps), both ways. All finan-
cial calculations are based on costs and revenues involved in the network.
The South African currency, Rand (R), has been used in our calculation.
We summarize various costs per PoP per year in Table 1. We take the cost
per 100 km of cable as the unit cable cost. This unit cable cost is taken to
be R16 000. We present the cable length for each PoP in Table 2, where
the ith PoP is denoted by Pi . The ith PoP has an associated cable cost ci

which can be found using the data in Table 2. The entire region where the

2A description of the problem A1
p is also given in (Ali, 2006).
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Table 1. Costs per 100 mbps bandwidth per PoP

Cost type Amount in Rand (R)

Capital cost (Ki ) R1 200 000
Installation cost (I ) R350 000
Miscellaneous cost (M) R50 000
Operating cost (Oi ) per year R2 250 000

Table 2. Cable length per PoP in kilometers

P1 P2 P3 P4 P5 P6 P7 P8 P9

20 42.5 30 52.5 57.5 37.5 40 50 23
P10 P11 P12 P13 P14 P15 P16 P17 P18

65 68 74.5 18 40 45 72.5 42.5 60
P19 P20 P21 P22 P23 P24 P25 P26 P27

35 27.5 25 60 32.5 55 69 27.5 27
P28 P29 P30 P31 P32 P33 P34 P35 P36

57 55 32 50 33 32.5 25 23.5 30

network has to be placed is divided into four different regions Ri , i =1,2,3
and 4 (Ali et al., 2003; Ali, 2006). There are different numbers of PoPs that
are to be placed in each region. At each PoP Pi , we have a number of users
ni and usage ui in gigabytes (gb). We summarize the number of users and
their yearly demand per PoP in Table 3. The last row in this table repre-
sents the total ni and ui per region. The amount of traffic using the net-
work per year is (expected usage) is 36936 gigabytes. We use the fixed tariff
ft = 30 and the variable tariff vt = 3 (in Rands).

Given the above demand, costs and revenues the problem is to obtain an
optimal rollout order so as to maximize the profits over a five year payback
period from the entire network. The six installation time constraints for the
network problem are as follows (Alcatel, private communication).

x10 �x1, x6, x9,

x12 �x15,

x16 �x18, x19.

(33)

4. Global Optimization Algorithms

We used the simulated annealing (SA) algorithm (Aarts and Korst, 1989;
Kirkpatrick, et al., 1983) to solve the discrete version of the optimization
problem introduced in the previous section. For the continuous optimiza-
tion problem, we used a modified version (MDE) (Kaelo and Ali, 2006) of
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Table 3. Number of users and usage (gb) per PoP

R1 R2 R3 R4

Pp np up Pp np up Pp np up Pp np up

P1 900 738.7200 P11 810 1071.144 P16 2400 3693.600 P25 2100 2585.520
P2 390 369.360 P12 1860 4062.960 P17 600 406.296 P26 570 701.784
P3 690 738.720 P13 960 775.656 P18 900 1108.080 P27 630 775.656
P4 600 1108.080 P14 600 369.360 P19 510 627.912 P28 690 517.104
P5 600 738.720 P15 600 923.400 P20 690 886.464 P29 780 775.656
P6 900 1108.080 P21 570 701.784 P30 810 960.336
P7 300 554.040 P22 630 775.656 P31 840 849.528
P8 450 590.976 P23 420 517.104 P32 600 664.848
P9 810 886.464 P24 720 849.528 P33 840 627.912
P10 2130 2954.880 P34 450 590.976

P35 900 812.592
P36 750 517.104

Total 7770 9788.040 4830 7202.520 7440 9566.424 9960 10379.016

the differential evolution (DE) algorithm (Storn and Price, 1997). In this
section we briefly present the idea of simulated annealing and differential
evolution. More details on these methods can be found in the respective
references.

4.1. simulated annealing

The SA algorithms are characterized by a point-wise search through the
feasible region. Trial points are generated according to some distribution
over the search region and a jump to a better point is always accepted. In
order for the algorithm to be able to leave local minima, a jump to a worse
point is also accepted but with a probability which decreases as the algo-
rithm progresses. The technique for decreasing this probability, called the
cooling schedule, is designed such that, using the theory of Markov chains,
convergence to a global minimum is assured (Dekkers and Aarts, 1991).

In any implementation of simulated annealing, a cooling schedule must
be specified. The initial temperature Temp(0) is usually large, so that most
cost increasing trials are accepted and there is little chance of the algorithm
zooming in on a local minimum. A scheme is then required for reducing
the temperature. Finally a stopping criterion is required for the algorithm.
The choice of a cooling schedule clearly has an important bearing on the
performance of a SA algorithm. Here, we use the cooling schedule sug-
gested by (Dekkers and Aarts, 1991).

The original simulated annealing algorithms are memoryless in the sense
that no previous locations of the point are recorded (not even a possible
visit at the global minimum). Therefore, in the SA process, it is possible
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that during a particular stage, the procedure will visit the optimal solution,
but due to an acceptance-rejection mechanism, it will move on from this
solution and finish at a less than optimal solution. To overcome this diffi-
culty, we add a memory f ∗

p (irr∗ for the irr problem) to the process (see
the aspiration based simulated annealing (ASA) in (Ali and Storey, 1997)).
If x̄ = (x1, x2, . . . , xn) is the current accepted point in the Markov chain
then the next point x̂ of the inner loop (see the ASA algorithm for the defi-
nition of inner and outer loops) is generated within the search space with
some distribution scheme. We accept x̂ if the following condition holds

exp
(

fp(x̄)−fp(x̂)

Temp(k)

)
�Ran, (34)

where Ran is a random number generated from the interval [0, 1], Temp(k) is the
temperature of the kth iteration of the outer loop. Therefore, at each stage cor-
responding to a fixed temperature, a Markov Chain is created for which some
points will be accepted and others will be rejected. If a point generates a smaller
function value than f ∗

p (or irr∗) then the memory is updated. This is carried out
at each step of the Markov chain. At the end, the last f ∗

p is taken as the final
solution to fp. We now define the ASA algorithm with memory.

ALGORITHM 1: The ASA Algorithm

Step 0. Initialization. Calculate the initial temperature Temp(0) according to
(Dekkers and Aarts, 1991), choose a random starting point X0 = x̄

and calculate fp(x̄). Initialize f ∗
p with fp(x̄). Set l =k =0.

Step 1. Metropolis simulation in inner loop. Generate the L points in the
kth Markov chain according to the following rule:
(a) Generate the new point Xl+1 = x̂.
If

exp
(

fp(Xl)−fp(Xl+1)

Temp(k)

)
�Ran

then accept the new point and update f ∗
p , if necessary. Set Xl =

Xl+1. Set l = l +1 and if l �L go to (a); otherwise go to Step 2.
Step 2. Convergence. If the stopping condition is satisfied then stop.
Step 3. Outer loop. Set k = k + 1 and l = 0. Reduce the temperature to

Temp(k+1) and goto Step 1.

Point generation rule in SA: Central to the SA algorithm is its cooling
schedule and we have used the cooling schedule suggested in (Dekkers
and Aarts, 1991). Implementation of the cooling schedule requires setting
some parameter values. We set these parameter values according to the
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suggestions in (Dekkers and Aarts, 1991). At each temperature the ASA
algorithm generates a Markov chain. The length of a Markov chain is the
number of points generated in the Markov chain. A point here means a
point, say x̄ in the solution space. Points in the Markov chain are gener-
ated both locally and globally. By locally we mean a new point Xl+1 from
the current accepted point Xl will be generated from some neighborhood
of Xl. We refer to the reference (Lee et al., 2004) for the neighbourhood
structure for the discrete variable x̄. By globally we mean the components
of Xl+1 will be generated randomly within the search space. The method
used for generating new points in the Markov chain involves the uniform
distribution (75% globally) and a local technique (25% locally) as sug-
gested in (Dekkers and Aarts, 1991). A random number Ran ∈ (0,1) is
generated. If Ran > 0.75 then Xl+1 is generated locally from the currently
visited points; otherwise Xl+1 is generated randomly (globally) for each
Markov chain (Dekkers and Aarts, 1991).

The ASA algorithm is a memory based simulated annealing algorithm
with a number of parameters of the cooling schedule. For the descrip-
tion of the parameters and their optimal values, see (Ali and Storey,
1997). Implementation of ASA to combinatorial optimization problems
with parameter values can also be found in (Lee et al., 2004).

4.2. differential evolution

The DE algorithm uses a population set S. The initial set

S ={x1, x2, . . . , xN }

consists of N random points in the search space. A contraction process
is then used to drive these points to the vicinity of the global minimizer.
The contraction process involves replacing bad point(s) in S with better
point(s), per iteration. In particular, DE attempts to replace all points in
S by new points at each iteration. DE, therefore, progresses in an epoch
or era base. During each epoch k, N new function values are evaluated on
N trial points. Trial points are found using mutation and crossover.

In each iteration, N competitions are held to determine the members
of S for the next iteration. The ith (i = 1,2, . . . ,N ) competition is held
to replace xi in S. Considering xi as the target point a trial point yi is
found from two points (parents), the point xi , i.e., the target point and
the point x̂i determined by the mutation operation. In its mutation phase
DE randomly selects three distinct points xp(1), xp(2) and xp(3), with replace-
ment, from the current set S. None of these points should coincide with
the current target point xi . The weighted difference of any two points is
then added to the third point which can be mathematically described as:
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x̂i =xp(1) +F(xp(2) −xp(3)), (35)

where F > 0 is a scaling factor, and xp(1) is known as the base vector. If
the point x̂i /∈� then the mutation operation is repeated. The trial point yi

is found from its parents xi and x̂i using the following crossover rule:

y
j

i =
{

x̂
j

i if Rj �CR or j = Ii

x
j

i if Rj >CR and j �= Ii,
(36)

where Ii is a randomly chosen integer in the set I , i.e., Ii ∈I ={1,2, . . . , n};
the superscript j represents the j th component of respective vectors; Rj ∈
(0,1), drawn randomly for each j . The ultimate aim of the crossover rule
(36) is to obtain the trial vector yi with components coming from the com-
ponents of target vector xi and mutated vector x̂i . And this is ensured
by introducing CR and the set I . The targeting process continues until all
members of S are considered. After all N trial points yi have been gener-
ated, acceptance is applied. In the acceptance phase the function value at
the trial point, f (yi), is compared to f (xi), the value at the target point.
If f (yi) < f (xi) then yi replaces xi in S, otherwise, S retains the original
xi . Reproduction (mutation and crossover) and acceptance continues until
some stopping conditions are met. MDE differs from DE in that MDE
uses a distribution to determine the value of F , and it uses some controlled
localization of searches using the base vector for rapid convergence (Kaelo
and Ali, 2006). DE uses a fixed value of F in (35). We now define the
MDE algorithm.

ALGORITHM 2: The MDE Algorithm

Step 1. Determine the initial set
S ={x1, x2, . . . , xN }

where the points xi, i = 1,2, . . . ,N are sampled randomly in �;
evaluate f (x) at each xi, i = 1,2, . . . ,N . Take N 	 n, n being the
dimension of the function f (x). Set iteration counter k =0.

Step 2. Determine best, worst point in S. Determine the points xmax and
xmin. If the stopping condition such as

∣∣fmax − fmin
∣∣ � ε is satis-

fied, then stop. The points xmax and xmin and their function values
fmax, fmin are such that

fmax =max
x∈S

f (x) and fmin =min
x∈S

f (x).

Step 3. Generate points to replace points in S for the next population (or
iteration). For each xi ∈S (i =1,2, . . . ,N ), determine yi by the fol-
lowing two operations:
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– Mutation:

x̂i =xtb +Fi

(
xp(2) −xp(3)

)
, (37)

where xtb is the tournament best (Kaelo and Ali, 2006) and xp(2)

and xp(3) are the remaining two out of the three random vectors
from S and Fi ∈ [−1,−0.4]∪ [0.4,1], chosen randomly. The tourna-
ment selection is applied for each i. If x̂i /∈� then we select another
Fi .
– Crossover: Calculate the trial vector yi corresponding to the tar-

get xi from xi and x̂i using the crossover rule (36).
Step 4. Acceptance rule to replace points in S. Select each trial vector yi for

the k + 1 iteration using the acceptance criterion: replace xi ∈ S

with yi if f (yi) < f (xi) otherwise retain xi . Set k := k + 1 and go
to Step 2.

The DE algorithm (Kaelo and Ali, 2006; Storn and Price, 1997) does
not require any properties of the function being optimized and it is easy
to implement. Unlike the original DE algorithm, the MDE algorithm has
only one parameter: the controlling factor in the crossover rule (36). We
use the parameter values according to the suggestion made by (Ali and
Törn, 2004).

5. Numerical Results

In this section we present the numerical results of the optimization prob-
lems. The parameter values of the optimization problems are interest, infla-
tion and growth rates. The interest rate (z1) and the inflation rate (z2) are
taken to be 12% per annum (pa) and 5% pa respectively. They are quoted
by the Reserve Bank of South Africa (Reserve Bank, South Africa). The
growth rate (z3) for demand for services is found to be 6% pa (Ali, 2006).
We use an annual growth rate (z4) for tariffs as 3% pa. Notice that this
rate is less than the inflation rate. This is compensated for by the growth
in demand. All results are obtained for d =5. The maximization problems
are functions of the installation year. Therefore, the maximization is carried
out with respect to PoP installation, i.e. which PoP is installed at which
point in time over the payback period so as to maximize Am

P and Bm
P ,

m=1,2,4, . . . ,∞.
We used the ASA algorithm (Ali and Storey, 1997), presented in the

previous section, to maximize the npv and irr defined by Am
P and and

Bm
P , m = 1,2,4. These are all discrete variable problems. The constraints

were satisfied by swapping. For example, if the first constraint in (33)
was violated then we swap the position of installation between x10 and
min{x1, x6, x9}.



46 M. M. ALI

We used the MDE algorithm (Kaelo and Ali, 2006) for the optimization
problems involving continuous variables such as A∞

P and B∞
P . For the vio-

lation of constraints in the continuous problem a penalty value was used.
Numerical experiments with these problems have shown that except for

A∞
P each of the other problems has a number of local minima. We have

presented the best results of five independent runs. We have noticed that
B∞

P is a more difficult problem than A∞
P . In particular, B∞

P needs higher
number of function evaluations and cpu time to converge. Another diffi-
culty associated with B∞

P is that of the occasional numerical instabilities in
the solution of F(irr)=0. Numerical instabilities occur when the gradient
of F is high and when an iterate of the solution process of F(irr)=0 pro-
duces a negative irr. We discard the rollout order for which the instabil-
ities occur. For example, a rollout order that gives a high (

∣∣F ′(irr)
∣∣> 9 ×

103) gradient of F is discarded and a different one is generated. Through-
out the numerical calculation we have used irr = 50% as an initial guess
to the solution of F(irr)=0.

All optimization problems involve calculation of subscription fees Yk

which depends on installation years. However, the contribution of Yk in
Am

P and Bm
P can be separated. Once the final installation years are known

Yk can be calculated. At the final solution we exclude the contribution of
Yk from Am

P and Bm
P in order to see the results of the individual PoP. In

Table IV, we therefore present the optimal installation year and the corre-
sponding net present value of profits (P v

xi
) due to each PoP. The npvs in

Table IV are in millions of Rands. We do not present the npv of profits of
each PoP for B∞

P in Table IV. Results for B∞
P will be presented later. The

last row in Table IV represents the total npv (npvv
pops) due to PoPs only. It

is clear from Table IV that the total npv is dominated by the npv for PoPs
P10, P12, P16 and P25 throughout all problems. This is expected as one can
see from Table III that these PoPs are where the majority of the users are
concentrated. It can be also seen that the installation years of these PoPs
are in the beginning of the first year of the payback period for A∞

P . The
installation years for these PoPs have a different pattern for B∞

P . One can
see that, unlike B∞

P , the optimal rollout order for A∞
P follows a bi-modal

pattern, i.e. xi are either at the beginning or at the end of the payback
period. It is interesting to note that the total npv for A∞

P is smaller than
those for A2

P and A4
P . All 5 runs for A∞

P obtained the same optimal value.
For each optimal irr, we have also presented the corresponding npv at the
bottom of the last three columns of Table 4. These npvs are less than the
optimized npvs presented at the bottom of the columns 6–8 of the same
table, as expected. Next we compare the cpu times needed to solve both
problems. We present the cpu times in Table 5. These are the times required
to obtain the results in Tables 4 and 8. It is clear from Table 5 that both
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Table 4. Optimal rollout order and corresponding npv in millions of Rands

Am
P Bm

P

m m m m

1 2 4 ∞ 1 2 4 ∞ 1 2 4 ∞ 1 2 4

i xi P v
xi

xi P v
xi

1 2 6 7 1.26 −0.90 −0.33 1.49 −0.60 1 8 18 3.08 −0.97 −0.67 −0.55
2 3 3 12 4.99 −2.91 −7.23 −7.16 −1.13 3 9 10 3.45 −2.91 −1.87 −8.90
3 2 0 13 1.34 −0.91 −0.29 0.60 −0.62 3 5 19 0.93 −0.92 −0.24 −0.84
4 0 4 3 0.00 3.95 5.80 18.83 4.41 3 6 9 1.70 1.04 3.57 12.13
5 4 1 12 1.48 −1.01 −0.22 0.75 −0.64 2 6 10 0.59 −0.93 −0.36 1.06
6 0 0 1 0.00 3.99 10.04 21.11 4.46 2 7 18 3.91 2.09 2.44 1.36
7 4 5 11 4.99 −1.50 −2.77 −3.59 −1.13 4 9 18 1.35 −1.50 −1.39 −1.55
8 0 0 14 4.99 −3.25 −4.47 −1.99 −1.13 4 6 18 2.51 −1.40 −1.96 −1.35
9 1 3 6 0.00 0.63 2.70 7.17 1.36 1 9 17 2.35 0.63 −0.51 0.86

10 0 0 1 0.00 29.84 61.76 119.09 30.35 0 6 14 0.76 29.84 23.44 35.78
11 0 0 0 0.00 3.46 8.98 20.05 3.92 2 6 18 2.67 1.78 3.19 0.01
12 0 0 0 0.00 45.21 92.52 187.22 45.74 0 0 1 0.77 45.21 92.52 177.34
13 1 4 8 0.01 −0.56 0.47 2.61 −0.15 4 4 11 0.63 −0.90 0.47 1.89
14 4 8 10 4.99 −1.98 −2.63 −8.85 −1.13 2 9 12 3.88 −3.93 −1.86 −7.11
15 1 1 3 0.00 1.01 4.37 10.18 1.84 1 5 18 3.97 1.01 2.22 0.38
16 0 0 0 0.00 40.15 82.39 166.96 40.67 0 2 14 0.73 40.15 65.08 47.55
17 3 9 17 4.99 −2.71 −1.77 −2.92 −1.13 2 2 12 0.97 −3.63 −7.46 −6.33
18 1 2 2 0.00 3.07 8.00 20.04 4.45 4 4 16 1.68 −0.03 5.85 3.84
19 3 7 0 4.98 −1.53 −1.40 −4.78 −1.13 4 9 16 0.98 −1.30 −1.19 −1.24
20 0 3 3 0.00 0.88 2.68 8.50 1.34 4 7 11 4.63 −0.61 0.67 4.49
21 2 6 17 2.77 −1.22 −0.76 −0.60 −0.93 4 4 11 1.70 −1.10 −0.78 0.02
22 4 4 14 0.05 −0.91 0.41 0.96 −0.20 3 4 12 3.37 −0.73 0.41 1.54
23 1 4 18 4.99 −3.46 −3.81 −1.73 −1.13 4 6 9 2.38 −1.60 −2.75 −5.42
24 4 2 0 0.00 −0.71 2.29 7.66 0.83 4 3 15 0.82 −0.71 1.97 1.63
25 0 0 0 0.00 24.70 51.48 105.09 25.20 0 7 19 0.79 24.70 14.28 3.98
26 4 1 18 2.67 −1.10 −1.14 −0.76 −0.93 1 4 16 2.37 −1.41 −0.78 −0.45
27 1 8 3 0.07 −0.59 −0.49 3.28 −0.20 4 4 18 2.82 −0.91 0.41 −0.37
28 1 8 10 4.99 −3.43 −1.85 −4.86 −1.13 3 9 11 2.67 −2.11 −1.48 −4.39
29 0 4 19 0.14 −0.64 0.43 −0.75 −0.18 0 6 12 1.90 −0.64 0.04 1.57
30 2 9 3 0.00 0.89 −0.31 12.01 2.39 4 5 18 1.43 −0.42 2.74 0.59
31 4 1 14 0.00 −0.71 2.59 2.17 0.84 3 7 15 1.85 −0.32 0.38 1.65
32 4 7 19 3.99 −1.20 −1.09 −1.04 −1.09 4 8 16 2.92 −1.20 −1.08 −0.84
33 4 6 16 4.99 −1.30 −1.52 −1.20 −1.13 4 7 12 1.07 −1.29 −1.37 −1.55
34 4 9 12 4.99 −1.40 −1.29 −2.42 −1.13 3 5 11 2.99 −1.72 −2.26 −2.67
35 1 9 12 0.00 −0.16 −0.70 2.39 0.34 4 6 8 4.09 −0.80 0.45 3.79
36 4 7 13 4.99 −1.60 −2.26 −3.51 −1.13 2 5 6 0.82 −2.71 −3.21 −6.93

122.04 300.58 672.01 150.17 109.66 188.90 250.97

algorithms required longer time to solve Bm
P than Am

P . In particular, the cpu
time of B∞

P is much higher than that of A∞
P . This shows that the problem

B∞
P is a more difficult than A∞

P .
The npv for the ith PoP presented in Table 4 is its portion of contri-

bution in the total npvv
pops. The net present value of profits in each year

generated by all PoPs can also be presented. For example, Table 6 presents
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Table 5. cpu times required to obtain
the results in Tables IV and VIII

m 1 2 3 4 ∞
Am

P 0.86 2.81 4.22 5.87 2.56
Bm

P 1.14 3.09 5.11 6.67 9.38

Table 6. Yearly cashflows in millions of
Rands for A1

P

i CFv
i CFi

0 −38.591 −38.591
1 5.449 6.103
2 23.093 28.968
3 28.908 40.614
4 4.854 7.638
5 98.335 173.300

122.048 218.032

these values due to all PoPs for A1
P . In Table 6, i is year index, CFv

i is
the net present value of cashflow and CFi is the cashflow at year i. It can
be seen in Table 6 that the total npv of cashflow is 122.048 which is equal
to the total npv due to all PoPs in Table 4 (see column 6). The irr of the
cashflows CFi is 64.98%. If we include the contribution of the subscription
fees in CFi then the irr becomes 64.83%. Both of these irr are less than
the optimal irr (99.67%) in B1

P (see Table 9 later), as expected.
Before presenting the total npv and irr from the entire network, we

describe how the Yk values are obtained from a rollout order. For example,
the optimal rollout order for A1

P is to install 10, 8, 4, 3 and 11 number of
PoPs in year 0 to year 4 respectively (see column 2 in Table 4). The yearly
usage for this rollout order is presented in Table 7. The data under year
0 represents the usage in year 0 from 10 PoPs. The data under year 1 is
the total usage in year 1, i.e., 19967.601 gb is the result of a 6% pa incre-
ment on usage from the 10 PoPs installed in year 0 and 5285.541 gb is also
an increased usage from 8 PoPs installed in year 1. The total yearly usage
in the last row in this table shows that none of these usages is double the
usage of the previous year. Therefore Yk can easily be calculated using the
total yearly usage from a table such as Table 7.

We now present the optimal rollout order and the cashflows generated
for B∞

P . These are presented in Table 8 where cxi
represents costs and

rxi
revenues generated at xi . Therefore the cashflow CFi = rxi

− cxi
, i =

1, . . . ,37. The cashflows CFi, i = 38, . . . ,42, are due to the subscription
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Table 7. Usage in gb per year due to optimal rollout order for A1
P

year→ 0 1 2 3 4

18837.360 19967.601 21165.657 22435.596 23781.731
5285.541 5602.673 5938.833 6295.126

3527.609 3739.265 3963.620
1671.671 1771.971

9139.646
Total 18837.360 25253.142 30295.939 33785.365 44952.094

fees. The column under Pri
represents the order at which the PoPs are

installed. For example, the Pr1 =5th PoP was installed at first and the Pr36 =
20th PoP was at last. The results for CFi , rxi

and cxi
in Table 8 are in

millions of Rands. The data under the column under xi in Table 8 and in
Table 4 for B∞

P are the same, except in Table 8 they are presented in the
order at which the PoPs are installed. The ith cashflow presented in Table 8
is not the cashflow generated by the ith PoP. The ith (i =1,2, . . . ,36) cash-
flow is generated by the ith PoP installed at xi and by all PoPs that are
installed prior to the ith PoP. The resulting irr for the cashflows presented
in Table 8 is 1353.31%. In the next table we present the optimal function
values for all problems. It is clear from Table 9 that the npv fp increases as
m increases from 1 to 4. However, fp decreases for m=∞. In this partic-
ular problem, five independent runs produced the same minimum value. It
is possible that each of these runs got trapped in a less than optimal solu-
tion. On the other hand, the irr increases with m for all values of m.

A comparison of the npvs in Tables 4 and 9 shows that the effect of the
subscription fee is very little. However, numerical experiments have shown
that Bm

P is very sensitive to the Yk values. For example, if we double the
yearly subscription fee X0 then the optimal irr for B∞

P drops to 732.88%
from 1353.31%. Besides, the number of function evaluations (in this case
the solution of F(irr)=0) increases by about 19%.

We now sum-up this section by noting that the mathematical model
developed, for the purpose of assisting the investors, has been tested on
a practical network problem. Results obtained in Table 9 shows that the
optimization technique can potentially be used in assessing the commer-
cial viability of a network project. For example, when the investors make
an investment they expect an irr from the investment to make a profit. If
the optimized irr is higher than their expected irr then the investors will
receive higher returns on their investment, otherwise the investment will not
be profitable to them. Therefore, the methodology presented here can guide
the investors prior to any investment is made.
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Table 8. Optimal rollout order vs cashflow in millions of Rands
for B∞

P

i Pri xi CFi i CFi cxi
rxi

1 5 0.59 −1.65 38 0.00 1.657 0.000
2 13 0.63 −1.64 39 −0.05 1.742 0.094
3 16 0.73 0.68 40 −0.05 2.339 3.020
4 10 0.76 3.04 41 −0.05 3.113 6.153
5 12 0.77 7.03 42 −0.06 3.992 11.025
6 25 0.79 9.61 5.006 14.625
7 36 0.82 9.20 6.475 15.679
8 24 0.83 9.46 8.045 17.507
9 3 0.93 9.52 11.606 21.132

10 17 0.97 7.55 16.124 23.676
11 19 0.98 6.93 20.725 27.661
12 33 1.07 6.02 27.765 33.794
13 7 1.35 2.47 42.940 45.415
14 30 1.43 8.37 60.556 68.934
15 18 1.70 22.65 86.731 109.389
16 21 1.70 22.13 113.432 135.565
17 4 1.70 36.66 140.180 176.8413
18 31 1.85 42.95 173.067 216.026
19 29 1.90 46.10 208.253 254.357
20 9 2.35 60.50 265.027 325.536
21 26 2.37 60.07 322.932 383.007
22 23 2.38 44.44 381.136 425.578
23 8 2.51 33.80 446.577 480.379
24 11 2.67 72.93 521.478 594.412
25 28 2.67 53.39 596.475 649.865
26 27 2.82 62.41 681.146 743.559
27 32 2.92 57.96 772.202 830.164
28 34 2.99 43.09 868.480 911.573
29 1 3.08 49.62 971.181 1020.809
30 22 3.37 64.50 1096.572 1161.078
31 2 3.45 3.24 1228.293 1231.542
32 14 3.88 −73.59 1396.198 1322.602
33 6 3.91 31.08 1566.362 1597.444
34 15 3.97 91.58 1741.623 1833.213
35 35 4.09 127.57 1928.862 2056.441
36 20 4.63 201.98 2169.104 2371.088
37 5.00 88.44 277.325 365.768

Table 9. Optimal npv in millions of Rands and irr per cent from the entire network

Am
P Bm

P

fp irr

m→ 1 2 4 ∞ 1 2 4 ∞
121.86 300.39 671.92 150.17 99.67 458.71 1033.61 1353.31
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6. Conclusion

We model two financial optimization problems and optimally determines
the PoP rollout order of a network using the global optimization algo-
rithms. This determines if the investors or the operators can achieve their
profitability targets. When more than one architecture can be used in a
certain PoP location, it is not clear upfront which architecture is the most
profitable. The methodology presented here can easily handle this by rec-
onfiguring the network. The optimization results can be used to config-
ure a network from which test data can be generated. The test data can
then be used to validate the network and therefore the design methodol-
ogy. The solutions of the optimization problems can therefore provide an
investment policy for investors in a data network. For instance, the opti-
mization results such as irr can help the investors in adjusting the tariff
to have a greater access in the competitive market. Therefore, our meth-
odology can guide the investors. Furthermore, we have taken a combined
telephone and data network, although our methodology can be applied
separately to either.

The methodology can easily be extended to a decision engine in conjunc-
tion with the network design which will be capable of suggesting optimum
network configurations to the network designer based on a range of hard
and soft inputs such as the cost of the network, the ability to expand the
network and the ability to meet the financial targets. Our ongoing research
includes an integrated design methodology and software program that can
be used to optimize a network.
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